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Abstract

Real-time validation of rocket engine sensor data
improves mission safety and reduces flight operations
and ground test costs. NASA Lewis Research Center,
in partnership with ISAI/ExperTech, has developed
an innovative sensor validation system enabling real-
time, automated sensor failure detection for all types
of mission critical systems. Work to date has verified
that these sensor validation algorithms enable highly
reliable data validation for critical Space Shuttle
Main Engine performance sensors, including the
turbine discharge temperatures on both turbopumps.
We have completed production of a prototype run-
time module which has been shown to validate 22
SSME flight sensors in real-time with very high
reliability.

The Sensor Validation System consists of a sensor
validation network development system and a real-
time kermel. The network development system
provides the workstation-based tools that define the
analytical redundancy relations and decision strategy
used by the real-time kernel to detect sensor failures
in a real-time data stream. The network development
system includes an autocode generator which
automatically produces the validation files used by
the real-time kernel. The real-time kernel plus the
autocode generated files form a run-time module
which can be easily integrated with the host process.
This design enabies non-programmers to produce and
maintain sensor validation run-time modules for any
process application.

Background

Space Shuttle history illustrates the potential value of
sensor validation.! Numerous test aborts, launch
scrubs and launch delays have resulted from sensor
failures.  Sensor failures dominate the engine
anomaly reports. Operations costs are adversely
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impacted with each test abort, launch scrub and
anomaly investigation. This history, and the similar
sensor failure histories of other launch vehicles and
ground test facilities, prompted NASA Lewis
Research Center (LeRC) to develop a highly reliable,
cost effective approach to the real-time detection and
identification of sensor failures.

Efforts to identify and develop an effective sensor
validation strategy were initiated by NASA LeRC in
1990. Early studies included an evaluation of known
algorithmic approaches for automating the sensor
validation process.> From these studies, a prototype
algorithm based on analytic redundancy and Bayesian
belief networks was defined. This algorithm was then
used to develop a prototype software module
configured to validate the high pressure fuel turbine
discharge temperature (HPFT DS T) sensors for the
Space Shuttle Main Engine (SSME).> Simulation
laboratory testing was followed by five hot-fire
evaluation tests at the NASA Marshall Space Flight
Center Technology Test Bed.  All simulation
laboratory sensor failures were detected with no false
alarms in simulation or hot-fire testing. The results of
these early tests and prototypes confirmed the
potential of the sensor validation approach and
provided the impetus for further development.

In 1995, NASA LeRC partnered with
ISAI/ExperTech to develop a general purpose
solution for the development and production of
sensor validation systems. This effort focused on the
development of a set of software tools which
substantially —automate this development and
production and extended the prototype algorithm to
provide coverage for all SSME operating states from
engine start through shutdown. The capability and
performance of this set of software tools, herein
known as the Sensor Validation System (SVS), was
then verified by the production of a prototype run-
time system which validates 22 SSME flight sensors
in real-time with very high reliability. It is this
development and testing effort which forms the basis
for this paper.
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Requirements for sensor data validation exist in any
mission critical aerospace or industrial control and
safety system where data integrity is essential. The
technology is applicable to any process or vehicle
control application where:

e  Time-critical, closed-loop control and safety
monitoring depend on sensor input;

e  Unexpected process interruptions due to sensor
failures or false alarms are uneconomical.

The SVS automates the production of application
specific sensor validation run-time modules which are
embeddable in the user’s process control
environment. These real-time capable modules
enable improved safety, reduced maintenance cost,
and optimal economics for many process-oriented
enterprises including aerospace vehicle and ground
support systems, power generation plants, and
chemical processing plants. The goals of the sensor
validation system are:

e Prevent process safety system false alarms and
unnecessary shutdown and maintenance;

« Ensure closed-loop control integrity to optimize
process economics, extend hardware life and
assure mission success;

e Automatically verify the integrity of the vehicle
or plant sensing systems;

o  Ensure reliable ‘red-line’ safety protection for
personnel and equipment;

o  Ensure that automated diagnostic systems
‘reason’ with valid data;

¢  Minimize the manpower, schedule and
uncertainty associated with sensor failure
identification and remediation.

Sensor data failures are defined as any failure in the
data path which corrupts the sensor signal, thereby
providing erroneous information to the process
control or monitoring system. Thus, sensor validation
modules are effective at identifying failures in
sensors, cables and data acquisition electronics. The
algorithm isolates the specific sensor which has failed
and may be modified to generate a synthetic
replacement signal, if necessary.

We have used the SVS to produce a real-time
software module which detects SSME sensor data
failures with very high reliability. This SSME
prototype has been tested in workstation and
embedded applications by NASA, ISAI/ExperTech,
Boeing and Lockheed-Martin, all with excellent
results. Many of the X-33 and RLV concepts
incorporate  SSME derivatives for the primary
propulsion system, making our effort directly
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applicable to both the RLV and Space Shuttle
programs. More importantly, sensor validation
technology may be applied to many other flight
critical subsystems, including:

e Reaction control systems;

e  Propellant delivery systems;

e Auxiliary power systems;

o Inertial navigation systems;

e Crew life support systems;

e  Ground support systems.

Sensor Validation Approach

Our mathematical approach combines analytic
redundancy and Bayesian decision theory to provide
a solution which has well-defined real-time
characteristics, well-defined error rates, and is
scalable to validate any number of system sensors.”
Analytical redundancy is a technique in which a
sensor’s value is predicted from the values of other
sensors and known or empirically derived
mathematical relations. System design relationships
and sensor redundancies provide many of these types
of models. Relations can also be empirically derived
using techniques such as statistical analysis, pattern
recognition and neural networks.’.

A set of sensors and a set of relations among them
form a network of cross-checks used to periodically
validate all sensors in the network. The difference
between a value predicted using a relation and a
directly sensed value is called a residual. The
probability of a relation holding, given that all related
sensors are valid, is determined statistically by
placing a threshold value on the relation residual.
Statistical properties of the relation residuals are pre-
computed using nominal system operating data.
Threshold values are typically set at the three
standard deviation (3 sigma) value of the relation
residuals based on nominal operating data.

Bayesian belief networks provide a mathematically
sound method of determining whether each sensor in
the network is valid, given the results of the cross-
checks. Bayesian belief networks provide a rigorous
approach to the problem of information fusion — the
combination of evidence from several sources into a
single, consistent model.® A Bayesian belief network
is constructed to represent the joint probability
distribution of the sensor and relation states. The
probability of each sensor being valid, given the
current state of all relations, can be derived from the
belief network. The probability equations are used to
pre-define the configuration of the validation network
for real-time decision processing.
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Development Tools

A set of prototype development tools has been
produced and tested to verify the feasibility of
automating the development, production and
maintenance of real-time sensor validation modules.
The prototype SVS was implemented in CLIPS, a
rule-base expert system shell developed by NASA
Johnson Space Center. The prototype SVS provides
a menu-driven user interface and is compatible with
SunOS and MS-DOS based platforms.

The SVS development tools are used for initial
production and maintenance of the embeddable run-
time modules which perform the real-time validation
function in the user’s process environment. These
run-time modules are produced automatically by the
SVS autocode generator. A run-time module consists
of the following three components:

Run-time kernel — The general purpose embeddable
sensor data validation engine which performs real-
time analysis of input data for decision processing.

Validation network — The application specific sensor
and model relationships which describe analytic
redundancies expected in the input data.

Voting table — The application specific decision and
thresholding methodology used by the run-time
kernel to determine whether a sensor has failed.

In the embedded process environment, the run-time
kernel (validation algorithm) samples sensor values
and determines whether each relation ‘holds’ or does
‘not hold’ by thresholding on a pre-selected residual
value, such as the 3 standard deviation value. Once
the status of each relation in the network is
determined to ‘hold’ or ‘not hold’, the validation
algorithm draws a conclusion about the validity of
each sensor in the network. Conclusions from several
consecutive validation cycles are used to permanently
disqualify a sensor.

As shown in Figure 1, the development process
begins with the user’s definition of the sensors to be
validated and the analytic redundancies which exist
between them. The user’s knowledge of the
interrelationships and dependencies between sensor
parameters is captured through the definition of
mathematical relations (models) which define the
expected redundancies in the data. Once defined, the
redundancy relations are statistically fit to operations
data using the model-building tools to capture normal
process variations and noise present in the signals.
The set of sensors and the resulting set of relations
among them form a network of cross-checks used to
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validate all sensors in the network. We call this set of
relationships a sensor validation network.

The SVS provides a framework and set of utilities to
capture user knowledge of the analytic redundancies
in the process data. The central purpose of the SVS
is to automatically express this network of user
defined relations as a Bayesian belief network and to
automate the analysis and optimization of the network
design and threshold parameter selection. The
recursive mathematical manipulations required for
network analysis are automated, thereby providing
immediate feedback to the user during network
development. Once an operable network is
completed, the tools are used to make quantitative
predictions of the system operating false alarm (FA)
and missed detection (MD) rates. Quantitative error
rate predictions enable the sensor validation network
to be readily tuned for optimal performance prior to
final production and use. In most cases, certainty in
the sensor data is increased by many orders of
magnitude.

SVS testing tools are provided to automate the
process of testing against large numbers of actual or
simulated sensor failure cases and are used to verify
run-time module performance prior to field use.
Single and muiti-sensor failures may be simulated
including hard, drift and noise failure types.

Once the wuser is satisfied with the network
performance, the SVS provides the utilities to
automatically generate the run-time module which
performs the validation function in the user’s process
control environment. This feature enables operations
and systems engineers to readily produce and
maintain sensor validation code without the need for
a dedicated team of software programmers.

The interface between the sensor validation run-time
module and an operating system (e.g., an engine or
facility controller) has been made as generic as
possible.  The interface consists of two simple
function calls. The initialize function is called once
to initialize the system. The validate function is
called every controller cycle to validate the sensors.
The validate function takes an arbitrary data structure
holding the current sensor values in engineering units
and a callback function which returns the current
values of the requested sensors. The validate
function also takes a second arbitrary data structure
which holds the validation status for each sensor and
a second callback function which performs the
necessary processing to inform the host system of a
sensor failure.

American Institute of Aeronautics and Astronautics



Figure 1. The SVS Automates a Comprehensive Methodology
for Production of Embeddable Run-Time Systems
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This interface makes the run-time module readily-
portable, since reimplementing the two callback
functions is all that is required to interface with a new
operating system.

Results of SSME Application

The validation performance and real-time capability
of the embeddable run-time modules have been
proven by testing with actual SSME flight data. The
SVS toolkit was used to design and implement a
sensor validation run-time module for 22 SSME flight
sensors. The SSME prototype was designed to
validate 15 flight critical measurements with 7
additional measurements and 2 command parameters
added to complete the analytic redundancy network.
The prototype network used only binary relations
(relations involving two sensors). These simple
relations were shown to provide adequate redundancy
for highly reliable sensor validation. Multi-parameter
relations may be used in future applications to further
enhance validation performance. Once the
redundancy relations were selected, the analysis,
optimization and production of the SSME run-time
module was completed in seven days using data from
20 flights to train the network (set nominal
thresholds).

The prototype SSME run-time module performed
correctly on data from 50 SSME flight firings,
including the proper identification of 3 sensor failures
encountered in these flights. Additional development
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tests using simulated sensor failures demonstrated
100% accuracy on “hard” sensor failures and 100%
accuracy on “soft” sensor failures (drifts and noise).
A 0% false alarm rate was demonstrated in all testing.
These results are consistent with the very low error
rates predicted by the SVS analysis (1 error in 10°
firings).

SSME Network Design

The design of the SSME prototype network, shown in
Figure 2, involved a total of 22 sensors and 2
command parameters with 59 binary pairs modeled
using 202 relations. Separate relations were used
during each engine operating phase for the majority
of the sensor pairs. The parameters included in the
network are identified in Figure 3.

Characterization Testing

A series of characterization tests was performed to
provide a detailed assessment of the SSME run-time
module performance. SVS automated testing tools
were used to perform false alarm tests on nominal
data, drift tests to determine sensitivity, and simulated
failure tests to determine missed detection rates. No
false alarms were generated in testing against 50
flight datasets. The three sensor failures which
existed in the datasets were all detected within 4
controller cycles of the onset of the event.



Figure 2. SSME Flight Sensor Validation Network Design

The results of the drift tests for steady-state engine Figure 3. Flight Parameters Used In the SSME
operation are shown in Figure 4. The worst-case Prototype Sensor Validation System
performance in this series occurs for HPOT DS T - e : —
(PIDs 233 and 234) which is observed to drift by  Parameter ID | Parameter Name
~200R (~16%) before being disqualified by the 30 LPOP SPEED B
sensor validation system. This is an expected result 40 OPOV ACT POS A
due to the high level of signal variability which is . 42 FPOV ACT POS A
considered “normal” for this parameter. = Most 58 FPB PC
importantly, drift test results demonstrate a ~50%
. . ) . 59 PBP DS P
margin relative to the HPOT DS T high red-line value
of 1760R and a ~65% margin relative to the low red- 90 HPOPDS P
line value of 720R. This testing verifies that the 125 MCCPC A2
system will disqualify a failed HPOT DS T sensor 130 MCC PC Al
well before it reaches its flight red-line value. 133 FUEL FLOW Al
Drift testing clearly demonstrates the ability of the 141 OPOV ACT POS B
sensor validation system to prevent safety system 143 FPOV ACTPOS B
false alarms and unnecessary engine shutdowns. 161 MCC PC B2
Good failure detection margins, relative to flight red- 162 MCC PC B1
lines, were demonstrated for all red-line parameters in 175 FPOV CMD
the network. Drift test results, expressed as a 176 OPOV CMD
percentage of the red-line margin used prior to sensor 231 HPFTDSTA
disqualification, are summarized in Figure 5. 232 HPFTDSTB
‘ 233 HPOTDSTA

234 HPOTDSTB

251 FUEL FLOW A2

253 FUEL FLOW B2

260 HPFP SPD A

261 HPFP SPD B

301 FUEL FLOW B1
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Figure 4. Steady-State Drift Test Results

Semsor |  Bascline | FailHigh | FailHigh% | Faillow | Fa
233 1338.0 1538.0 14.9% 11393 14.9%
234 1347.5 1564.4 16.1% 1135.9 15.7%
231 1638.2 1809.6 10.5% 1466.7 10.5%
232 1674.0 1794.8 7.2% 1560.3 6.8%
130 3129.3 3288.9 5.1% 2975.9 4.9%
129 3127.4 3286.9 5.1% 2944 4 5.9%
162 3124.3 3283.6 5.1% 2971.1 4.9%
161 31254 3284.8 5.1% 2972.2 4.9%
042 80.3 86.1 7.2% 74.8 6.8%
143 - 79.8 84.7 6.2% 74.4 6.8%
040 65.8 74.8 13.8% 56.6 14.0%
141 65.5 70.2 7.2% 61.1 6.8%
059 7395.4 8416.7 13.8% 6424.7 13.1%
260 35122.8 36548.9 4.1% 33738.8 3.9%
261 35111.6 36537.3 4.1% 33728.1 3.9%
030 5095.0 5249.3 3.0% 4943.6 3.0%
133 15975.4 17127.8 7.2% 14890.1 6.8%
301 15968.0 16950.4 6.2% 14883.2 6.8%
251 15985.2 16968.6 6.2% 14899.3 6.8%
253 15968.0 17119.9 7.2% 14883.2 6.8%
058 5070.8 5276.6 4.1% 4870.9 3.9%
090 4072.9 4280.6 5.1% 3873.2 4.9%

Sensor Reading

Figure 5. Drift Testing Demonstrates Sensor Failure Detection
Well Before Flight Red-Line Limits Are Reached

- . - PID [161] | &HIGH MARGIN USED
High Red-Line Limit OLOW MARGIN USED
A PID [162] |
|
Failure Detected ‘
2 PID [129] 1
J® \ !
FE |
4 : PID [130] |
.@ 8 1
g3 PID [232]
v =
Drift Failure Begins PID [231]
PiD [234
Normal Value [234]
PID [233]
Time -100% -50% 0% 50% 100%
lllustration of % Margin Calculation % of Red-Line Margin Used Prior to Failure Detection
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The validation system was tested against 100 randomly
generated single-point sensor failures, and 25 randomly
generated multiple-point sensor failures.  Simulated
failure magnitudes were randomly generated between 10%
and 100% of the sensor full-scale range. These “failures”
were translated into hard failures, drift failures, and noise
failures and then overlaid on randomly selected historical
data. Failure initiation times included start transient,
power level transient and steady state conditions.

The results of the single-point failure tests are summarized
in Figure 6. The system provided failure detection
accuracy of 100% with no false alarms. Single point
failure simulations included two cases during start
transients, four during downthrust transients and the
remainder at steady state. In three of these cases, the
randomly selected data file contained real sensor failures.
In each case, the system correctly identified both the real
and simulated failures.

Sensor validation run-time modules are designed to
dynamically reconfigure their voting strategies to
accommodate multiple non-simultaneous sensor failures.
Multiple sensor failure cases tested included random
combinations of hard, drift and noise failure types. One
upthrust transient case and 24 cases at steady state were
randomly selected and tested. In one of these cases, the
selected data file contained a real sensor failure. In this
case, the system correctly identified and accommodated
all three failures (one real and two simulated).

These results clearly verify the feasibility of using the
prototype SVS and its run-time modules to reliably detect
rocket engine sensor failures and eliminate safety system
false alarms. Substantial automation of the network
assessment, network optimization, autocode production
and verification steps was accomplished and the
performance of these automated tools was verified.

User Applications

Initial results have generated substantial interest in the
aerospace and power generation communities and have
led to cooperative demonstration activities with two
aerospace prime contractors. These activities have
focused on demonstrating the integration and real-time
embedded performance of the SSME prototype run-time
module for advanced launch vehicle applications.

Lockheed-Martin MRECS Testing

In September 1995, a cooperative demonstration effort
was completed with Lockheed-Martin Space Information
Systems (then Loral) to validate the real-time embedded
capability of the run-time kernel and SSME prototype
network. Lockheed-Martin integrated the 22 sensor
SSME prototype system into their Modular Rocket Engine
Control Software (MRECS) and demonstrated the sensor
validation module’s real-time capability in the NASA.
Marshall Avionics System Testbed (MAST) laboratory.
Lockheed-Martin integrated and tested the ANSI C
language SSME prototype module with the Ada language
MRECS software host in approximately one week.

The Lockheed-Martin testing verified the functionality of
the simple, generic interface provided by the sensor
validation run-time module as well as the real-time
embedded processing capability of the sensor validation
module in the MRECS environment Testing was
performed using a static data set derived from SSME
flight data.

Boeing Advanced Flight Computer Testing

In April 1996, an X-33/RLV focused cooperative
demonstration effort with Boeing Defense & Space Group
and NASA MSFC was completed. This effort
accomplished the real-time demonstration of the SSME
prototype module running embedded in Boeing’s
advanced fault tolerant flight computer in the NASA
MAST laboratory. Boeing integrated the SSME run-time
module within their Ada language flight software and
performed stand-alone verification testing using SSME
flight data over a period of approximately two weeks.

Figure 6. Detection Performance for Single Sensor Failure Simulations

' Failure Type Number of Tests % Detected Average Detection Time
HARD 36 100% 0.1 sec
DRIFT 31 100% 0.74 sec
NOISE 33 100% 1.2 sec
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NASA MSFC modified facilities in the MAST
laboratory to “play back” actual SSME flight sensor
signals and enable true real-time testing. The
capability to “overlay” failures on actual flight data
was also provided by the MAST simulator. A
comprehensive test series was performed which
successfully demonstrated the real-time capability of
the SSME run-time module to validate flight sensor
data. All sensor failures were detected, including
multiple non-simultaneous failures within a single
test, with no false alarms generated.

The execution time of the SSME prototype was
determined to be on the order of 3-msec per data
cycle on Boeing’s R3000 host running at 25-MHz.

Work in Progress

Development of sensor data validation methods and
SVS tools is on-going with a current emphasis on:

e Enhanced discrimination between sensor and
plant failures;

e Validation of high data rate sensors, such as
accelerometers;

« Integration of heuristic validation methods with
the Bayesian analytic redundancy method;

e Advanced statistical thresholding algorithms;
e Advanced redundancy modeling methods;

e  Sensor validation module development using
pre-production design and simulation data.

These extensions will improve the versatility and
performance of the SVS for a wide range of sensor
validation application domains.

Concluding Remarks

Efforts to date have conclusively demonstrated the
feasibility of using the Sensor Validation System for
rapid construction of embeddable software to reliably
detect rocket engine sensor failures. The integrated
set of software tools makes optimal use of the
technical expertise of operations and systems
engineering specialists while requiring minimal
programming skills. The tool set captures the user’s
knowledge of analytic redundancy in the sensor data.
Once these relations are defined, the tool set enables
very rapid production and optimization of highly
effective sensor validation networks. Automated
production of embeddable run-time code is enhanced
by a simple, proven interface to the host process
control system. Rapid development capability and
ease of host system integration have been proven by
the production and embedded system testing of the 22
sensor SSME prototype run-time module.
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Prototype testing has verified that the algorithms
enable highly reliable data validation for mission
critical SSME performance sensors, including the
turbine discharge temperatures on both turbopumps.
Many of the X-33 and RLV concepts incorporate
SSME derivatives for the primary propulsion system,
making SVS directly applicable to both the RLV and
Space Shuttle programs. More importantly, this
technology is applicable to many other flight critical
subsystems which will benefit from automated
detection of sensor failures in order to:

e Eliminate sensor failure induced false alarms and
erroneous shutdowns;

¢ Minimize the manpower, schedule and
uncertainty associated with sensor failure
identification and remediation.

Requirements for this capability exist in many other
aerospace and industrial control and safety systems
where data integrity is essential. A broad range of
applications in aircraft, heavy machinery, power
plants, and chemical process plants are anticipated.
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ACT
AVG
CMD
DS
FPB
FPOV
HPFP
HPFT
HPOP
HPOT
ISAI
LeRC
LPOP
MCC
MSFC
OPOV

PBP
PC
PID
POS
SSME

Symbols and Acronyms

Actuator

Average

Command

Discharge

Fuel preburner

Fuel preburner oxidizer valve
High pressure fuel pump

High pressure fuel turbine
High pressure oxidizer pump
High pressure oxidizer turbine

Intelligent Software Associates, Inc.

Lewis Research Center

Low pressure oxidizer pump
Main combustion chamber
Marshall Space Flight Center
Oxidizer preburner oxidizer valve
Pressure

Preburner boost pump
Chamber pressure

Parameter identifier

Position

Space Shuttle Main Engine
Temperature
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